Our current view of the interstellar medium (ISM) is as a multiphase environment where magnetohydrodynamic (MHD) turbulence affects many key processes: star formation, cosmic ray acceleration, and the evolution of structure in the diffuse ISM. In part 1 of this talk, I shall review the fundamentals of galactic turbulence and discuss progress in developing new techniques for comparing observational data with numerical MHD turbulence simulations. In part 2, I will focus on how turbulence affects the long-standing problem of star formation. From scales of giant molecular clouds (GMCs), I will demonstrate how the star formation efficiency can be analytically calculated from understanding how turbulence, gravity, and stellar feedback induce density fluctuations in the ISM via a probability distribution function analysis. This analytic calculation predicts star formation rates from pc size scales (GMCs) to kpc size scales in galaxies. Prof. Burkhart will be based at the Institut fuer Theoretische Astrophysik for her visit to Heidelberg and will be available for meetings by arrangement with her host, Ralf Klessen (klessen@uni-heidelberg.de).