Fakultät für Physik und Astronomie
STEPHEN PHILLIPS hostreviews.co.uk / UNSPLASH

The subsurface ocean of Enceladus: A habitable place in our solar system

Frank Postberg , Freie Universitaet Berlin

Saturn’s icy moon Enceladus harbours a global ocean, which lies under an ice crust of just a few kilometres thickness and above a rocky core. Through warm cracks in the crust a cryo-volcanic plume ejects ice grains and vapour into space providing access to materials originating from the ocean. The ocean is 30–55 km deep and provides an environment of mild salinity and alkaline pH. Hydrothermal activity is suspected to be occurring at the bottom of the ocean and also deep inside the water-percolated porous core. The energy is delivered by tidal dissipation. Two mass spectrometers aboard the Cassini spacecraft, the Cosmic Dust Analyzer (CDA) and the Ion and Neutral Gas Spectrometer (INMS) frequently carried out compositional in situ measurements of plume material emerging from the subsurface of Enceladus. Our latest results now show that, in addition to volatile organic compounds, some emitted ice grains contain concentrated macromolecular organic material with molecular masses clearly above 200u. Moreover, the mass spectra of the two instruments provide key constraints on the macromolecular structure. We suggest that the detected organic compounds and other materials found in the plume originate from Enceladus' hydrothermally active rocky core. Thermal ocean convection together with bubbles of volatile gases, transports these materials from the moon’s hydrothermal core up to the ocean surface. There, a spray of salty water together with droplets of solid organic nucleation cores - generated by bubble bursting and subsequently coated with ice from vapor freezing - are ejected into space.

Heidelberg Joint Astronomical Colloquium
10 Dec 2019, 16:30
Philosophenweg 12, großer Hörsaal

Add to calendar Add to calendar
Today:
There are no scheduled talks today.