The multi-phase ISM of radio galaxies: a spectroscopic study of ionised and warm gas

Francesco Santoro , MPIA
Active galactic nuclei (AGN) are among the most powerful sources of energy in the universe. They usually resides at the centre of massive galaxies and their energy is originated by the accretion of material onto a supermassive black hole. AGN can inject a significant amount of energy in the interstellar medium (ISM) of their host galaxies in the form of radiation and/or jets of relativistic particles. The interaction between the energy emitted by an AGN and the material in the host galaxy is called 'AGN feedback' and, nowadays, is routinely included in cosmological simulations aimed at reproduction the observed properties of the current population of galaxies (e.g. the quenching of the star formation in massive galaxies).

In this talk I will address some of the open questions related to AGN feedback and to the mechanisms involved in the accretion of gas onto a supermassive black hole. This is has been done by studying the ISM of radio galaxies (i.e. AGN showing relativistic jets) spanning different evolutionary stages and by using different observational techniques, mainly in the optical and in the infrared band, to probe the warm ionised and warm molecular gas. In particular, I will focus on the effect that radio jets can have on the gas of the host galaxy and how this allows us to take a look at the many facets of the AGN feedback phenomenon.
Königstuhl Colloquium
5 Apr 2019, 15:00
MPIA lecture hall

Add to calendar Add to calendar