Fakultät für Physik und Astronomie
STEPHEN PHILLIPS hostreviews.co.uk / UNSPLASH

Quantum Gravity, Cosmology and Fundamental Parameters

Djordje Minic , Virginia Tech, USA

I will discuss the computation of fundamental parameters (the cosmological constant, the Higgs mass and the masses and mixing matrices of quarks and leptons) in terms of fundamental cosmological scales based on a new approach to quantum gravity and cosmology called ``gravitization of quantum theory.`` First, I will provide a background to this approach and then discuss the computation of the cosmological constant in more detail, and finally, generalize that computation for the case of the observed Higgs mass as well as the masses and mixing matrices of quarks and leptons. Surprisingly enough, the observed masses of quarks and charged leptons are controlled by a new scale of 7 MeV (called the Bjorken-Zeldovich scale) that is close to the scale of Big Bang nucleosynthesis, and the normal hierarchy of neutrino masses is controlled by the observed cosmological constant (dark energy) scale. Also, the CKM and PMNS mixing matrices have similar structures controlled by these respective scales, even though they are numerically very different. There are 3 generations in this approach, but there is also a dual (dark) Standard Model characterized by ``fuzzy`` degrees of freedom that do not commute with the visible Standard Model degrees of freedom. I will comment on how all that relates to the problems of dark matter and dark energy and I will also discuss a ``smoking gun'' experiment that distinguishes this new approach to the fundamental questions in quantum gravity and cosmology.

Kosmologie und Elementarteilchenphysik
24 Oct 2023, 14:15
Institut für Theoretische Physik, Online

Add to calendar Add to calendar